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The Poisson equation

Let (M, g) be a complete Riemannian manifold with empty boundary, ∂M = ∅,
n = dim(M). Let f : M → R be a (regular) function. Then u is a (classical)
solution to the Poisson equation if

∆u = f on M,

where ∆ denotes the Laplace-Beltrami operator, i.e. ∆ = trace
(
∇2
)

= div(∇).

If M is compact, then there exists a solution if and only if
∫
M
f = 0.

If (M, g) is rotationally symmetric (e.g. Rn or Hn) sufficient (and necessary)
conditions for the existence of (radial) solutions can be found by solving an
associated ODE.

Question: find natural conditions on the manifold (M, g) and the function f to
guarantee the existence of a solution u to the Poisson equation.
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Green’s function

As it is well-known, the solvability of the Poisson equation is closely related to the
existence of the so-called Green’s function.

Malgrange (’55) showed that a complete Riemannian manifold (M, g) always
admits a Green’s function G (x , y), namely a symmetric function satisfying

∆G (x , ·) = −δx(·) on M.

In particular, if f ∈ C∞0 (M), then a solution u to the Poisson equation exists and
is given by

u(x) =

∫
M

G (x , y)f (y) dy .

A good control on a Green’s function will enable to establish existence of
solutions u for more general functions f .
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Notation and preliminaries

Let (M, g) be a complete non compact Riemannian manifold without boundary,
n = dim(M).
Fix a reference point p ∈ M and denote by r(x) = dist(x , p). For any x ∈ M and
R > 0, we denote by BR(x) the geodesic ball of radius R with center x .
We denote by Ric the Ricci curvature of g .

By definition (M, g) is non-parabolic if it admits a positive Green’s function,
and parabolic otherwise. If the manifold is non-parabolic, there exists a
unique minimal positive Green’s function. Equivalently, (M, g) is
non-parabolic if it admits a non-constant positive superharmonic function.

Let λ1(M) be the bottom of the L2-spectrum of the Laplace operator −∆.
One has λ1(M) ≥ 0. Moreover if λ1(M) > 0 then (M, g) is non-parabolic.

(A very good reference is [Grigor’yan, ’99])
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Poisson equation: previous results

There exists a solution u to the Poisson equation ∆u = f ∈ Cαloc(M) if

[Strichartz, ’83]: λ1(M) > 0 and f ∈ Lp(M), for some 1 < p <∞.

[Ni, ’02]: λ1(M) > 0 (non-parabolic) and f ∈ L1(M).

[Ni-Shi-Tam, ’01]: Ric ≥ 0 and

|f (x)| ≤ C(
1 + r(x)

)2+ε

for some C > 0 and ε > 0. An integral assumption involving averages of f is
sufficient. Sharp on Rn.

[Munteanu-Sesum, ’10]: λ1(M) > 0, Ric ≥ −K and

|f (x)| ≤ C(
1 + r(x)

)1+ε

for some K ,C > 0 and ε > 0. Sharp on Hn.
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A first result

Let (M, g) be a complete noncompact Riemannian manifold without boundary.
Choose a reference point p ∈ M. For any x ∈ M, let r(x) = dist(x , p) and µ(x)
be the smallest eigenvalue of Ric at x .
Then for any V ∈ TxM with |V | = 1, one has Ric(V ,V )(x) ≥ µ(x), and we have
µ(x) ≥ −ω(r(x)) for some ω ∈ C ([0,∞)), ω ≥ 0. Hence, for any x ∈ M, by
solving a simple ODE, we have

Ric(V ,V )(x) ≥ −(n − 1)
ϕ′′(r(x))

ϕ(r(x))
,

for some ϕ ∈ C∞((0,∞)) ∩ C 1([0,∞)) with ϕ(0) = 0 and ϕ′(0) = 1. Note that
ϕ,ϕ′, ϕ′′ are positive in (0,∞). For a fixed small ε0 > 0 (depending on the
geometry of the manifold) we set

K̃ (R) := sup
y∈BR (p)\Bε0

(p)

ϕ′′(r(y))

ϕ(r(y))
, K̂ (R) := sup

y∈BR (p)\Bε0
(p)

ϕ′(r(y))

ϕ(r(y))
,

K (R) := max{1, K̃ (R), K̂ (R)}.
Then we define

θ(R) := R
√
K (R).
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A first result

G. Catino, D.D. M., F. Punzo, The Poisson equation on manifolds with
positive essential spectrum, 2018, preprint.

Theorem [Catino-M.-Punzo, ’18]

Let (M, g) be a complete noncompact Riemannian manifold with λ1(M) > 0.
Suppose that f is a locally Hölder function on M. If

∞∑
j=1

θ(j + 1)− θ(j)

λ1 (M \ Bj(p))
· sup
M\Bj (p)

|f | <∞,

then ∆u = f has a classical solution u.
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Remarks about the assumptions

λ1(M) > 0 and
∞∑
j=1

θ(j + 1)− θ(j)

λ1 (M \ Bj(p))
· sup
M\Bj (p)

|f | <∞ .

With some (nontrivial) work we can replace the assumption λ1(M) > 0 with
a weaker one, namely we can assume positivity of the essential spectrum,
λess

1 (M) > 0, which is equivalent to say that λ1(M \ K ) > 0, for some
compact subset K ⊂ M.

θ(j + 1)− θ(j) is related to a lower bound of the Ricci curvature (and to an
upper bound for ∆r(x)).

In particular, if Ric ≥ −K , then θ(j + 1)− θ(j) ≤ C for any j .
By monotonicity λ1 (M \ Bj(p)) ≥ λ1(M).
Hence, we recover Munteanu-Sesum’s result.

The result is sharp, on a family of rotationally symmetric (model) manifolds.

Main drawbacks of this result: the spectral assumption λess
1 (M) > 0 places

some strong conditions on the geometry of the ambient manifold,
and the geometry of all the manifold is relevant (while one would like to have
conditions only on the geometry of the manifold “at infinity”, i.e. outside an
arbitrarily large compact set).
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Corollaries

Corollary

Let (M, g) be a complete noncompact Riemannian manifold with λess
1 (M) > 0

and let f be a locally Hölder function on M. If

Ric ≥ −C
(
1 + r(x)

)γ
, |f (x)| ≤ C(

1 + r(x)
)1+ γ

2 +ε
,

for some C > 0, γ ≥ 0 and ε > 0, then ∆u = f has a classical solution u.

Corollary

Let (M, g) be a Cartan-Hadamard manifold and let f be a locally Hölder function
on M. If

− 1

C

(
1 + r(x)

)γ1 ≤ Ric(x) ≤ −C
(
1 + r(x)

)γ2
, |f (x)| ≤ C(

1 + r(x)
)1+

γ1
2 −γ2+ε

,

for some C > 0, γ1, γ2 ≥ 0, ε > 0 with 1 + γ1

2 − γ2 + ε ≥ 0, then ∆u = f has a
classical solution u.
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The Poisson eq. with a weighted Poincaré ineq.

We say that (M, g) satisfies a weighted Poincaré inequality with a positive weight
function ρ if ∫

M

ρ(x) v2(x) dV ≤
∫
M

|∇v |2 dV

for every v ∈ C∞c (M). Moreover, (M, g) satisfies the property (Pρ) if a weighted
Poincaré inequality holds for the weight ρ and the conformal ρ-metric gρ := ρ g is
complete. Note that the “best constant” in the inequality is normalized to 1.
Some examples:

(M, g) with positive spectrum: ρ := λ1(M) > 0. (Pρ) holds.

(Rn, gflat): ρ(x) :=
(
n−2

2

)2 1
|x|2 (Hardy inequality). (Pρ) holds.

(M, g) Cartan-Hadamard: ρ(x) :=
(
n−2

2

)2 1
r(x)2 [Carron ’97]. (Pρ) holds.

(M, g) non-parabolic: ρ(x) := |∇G(p,x)|2
4G 2(p,x) [Li-Wang ’06].

(Pρ) holds if G (p, x)→ 0 as r(x)→∞.

Remark: (M, g) satisfies a weighted Poincaré inequality if and only if (M, g) is
non-parabolic.
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Poincaré inequality holds for the weight ρ and the conformal ρ-metric gρ := ρ g is
complete. Note that the “best constant” in the inequality is normalized to 1.
Some examples:

(M, g) with positive spectrum: ρ := λ1(M) > 0. (Pρ) holds.

(Rn, gflat): ρ(x) :=
(
n−2

2

)2 1
|x|2 (Hardy inequality). (Pρ) holds.

(M, g) Cartan-Hadamard: ρ(x) :=
(
n−2

2

)2 1
r(x)2 [Carron ’97]. (Pρ) holds.

(M, g) non-parabolic: ρ(x) := |∇G(p,x)|2
4G 2(p,x) [Li-Wang ’06].

(Pρ) holds if G (p, x)→ 0 as r(x)→∞.

Remark: (M, g) satisfies a weighted Poincaré inequality if and only if (M, g) is
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We say that (M, g) satisfies a weighted Poincaré inequality with a positive weight
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The Poisson eq. with a weighted Poincaré ineq.

G. Catino, D.D. M., F. Punzo, The Poisson equation on Riemannian
manifolds with a weighted Poincaré inequality at infinity.

Theorem 1 [Catino-M.-Punzo]

Let (M, g) be a complete non-compact non-parabolic Riemannian manifold with

minimal positive Green’s function G . Let ρ(x) := |∇G(p,x)|2
4G 2(p,x) and let f be a locally

Hölder continuous function on M. If

∞∑
j=1

(ω(j + 1)− ω(j)) sup
M\Bj (p)

∣∣∣∣ fρ
∣∣∣∣ <∞,

then the Poisson equation ∆u = f admits a classical solution u.

ω(j) is a refinement of the function θ(j) (and it is increasing). On Rn

ω(j + 1)− ω(j) = C log

(
1 +

1

j

)
∼ C

j

The result is sharp on Hn, on Rn and on (a family of) model manifolds.
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The Poisson eq. with a weighted Poincaré ineq.

G. Catino, D.D. M., F. Punzo, The Poisson equation on Riemannian
manifolds with a weighted Poincaré inequality at infinity.
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Hölder continuous function on M. If

∞∑
j=1

(ω(j + 1)− ω(j)) sup
M\Bj (p)

∣∣∣∣ fρ
∣∣∣∣ <∞,

then the Poisson equation ∆u = f admits a classical solution u.

ω(j) is a refinement of the function θ(j) (and it is increasing). On Rn

ω(j + 1)− ω(j) = C log

(
1 +

1

j

)
∼ C

j

The result is sharp on Hn, on Rn and on (a family of) model manifolds.

D.D. Monticelli (Politecnico di Milano) The Poisson equation on Riemannian manifolds 11 / 27



The Poisson eq. with a weighted Poincaré ineq.

What happens with a weighted Poincaré inequality for functions with compact
support, outside a fixed compact set?

Theorem 2 [Catino-M.-Punzo]

Let (M, g) be a complete non-compact Riemannian manifold satisfying (Pρ) and
let f be a locally Hölder continuous function on M. If

∞∑
j=1

(ω(j + 1)− ω(j) + 1) sup
M\Bj (p)

∣∣∣∣ fρ
∣∣∣∣ <∞,

then the Poisson equation ∆u = f admits a classical solution u.

ω(j) is the same as in Theorem 1.

The result is sharp on Hn. Not in Rn (sadly...).
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Technical remarks

With the same notation as before, we define for r(x) > R > 1

KR(x) := sup
y∈Br(x)+R (p)\Br(x)−R (p)

ϕ′′(r(y))

ϕ(r(y))
,

IR(x) :=

{√
KR(x) coth

(√
KR(x)R/2

)
if KR(x) > 0,

2
R if KR(x) = 0

QR(x) := max

{
KR(x),

IR(x)

R
,

1

R2

}
,

ω(x) = ω(r(x)) :=

∫ r(x)

1

√
Qr(γ(s))/4(r(γ(s))) ds.

where γ is a minimal geodesic connecting p to x .
The function ω is again related to a lower bound of the Ricci curvature (and to an
upper bound for ∆r(x)) on annuli.
This result extends our previous one.
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Another technical remark

The result holds under the more general assumption: for every m ∈ N sufficiently
large there exists a positive weight function ρm such that∫

M\Bm(p)

ρm(x) v2(x) dV ≤
∫
M\Bm(p)

|∇v |2 dV

for every v ∈ C∞c (M \ Bm(p)). Moreover, the conformal ρm-metrics

gρm := ρm g

are complete.

A key property: if rρm(x) := distρm(x , p) then

|∇rρm(x)|2 = ρm(x).
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Sketch of the proof I

For the sake of simplicity we will just consider the case of Theorem 1, i.e. (M, g)

is non-parabolic with minimal positive Green’s function G and ρ(x) = |∇G(p,x)|2
4G 2(p,x) .

Notice that, in the more general case where one uses a family of weight functions
ρm, the manifold can be parabolic and we have to treat this case separately.

In order to prove the theorem, we have to show that, for every x ∈ M,∣∣∣∣∫
M

G (x , y)f (y) dy

∣∣∣∣ <∞.
This will define the function u(x) solution to the Poisson equation ∆u = f .

Using the Harnack inequality one sees that the above integral is finite at any point
x ∈ M if and only if it is finite at p.

For any 0 ≤ a < b ≤ ∞, we define

Lp(a, b) := {y ∈ M : a < G (p, y) < b}.
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Preliminary estimates I

The Green’s function G (p, ·) is harmonic away from p. In particular we can apply
the following

Lemma 1: Local gradient estimate for harmonic function [Yau]

Let R > 0 and z ∈ M with r(z) > R. Let w ∈ C 2 be positive and harmonic away
from p. Then

|∇w(z)| ≤ C
√
QR(z)w(z).

As a consequence, integrating along geodesics and using Gronwall inequality one
obtains

Lemma 2: Local pointwise estimate for G (x , y)

Let y ∈ M with r(y) > a ≥ 1. Then

A−1e−Bω(y) ≤ G (p, y) ≤ A eBω(y).

for some positive constants A,B (with B independent of a).
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Preliminary estimates II

Lemma 2 (pointwise estimate) and the maximum principle imply

Lp

(
0,A−1e−Bω(a)

)
⊂ M \ Ba(p),

Lp

(
AeBω(a),∞

)
⊂ Ba(p).

Using heat kernel estimates [Li-Yau] and volume comparison we can show

Prop. 1: High-level sets

One has ∫
Lp(A eBω(a),∞)

G (p, y) dy <∞.

D.D. Monticelli (Politecnico di Milano) The Poisson equation on Riemannian manifolds 17 / 27



Preliminary estimates II

Lemma 2 (pointwise estimate) and the maximum principle imply

Lp

(
0,A−1e−Bω(a)

)
⊂ M \ Ba(p),

Lp

(
AeBω(a),∞

)
⊂ Ba(p).

Using heat kernel estimates [Li-Yau] and volume comparison we can show

Prop. 1: High-level sets

One has ∫
Lp(A eBω(a),∞)

G (p, y) dy <∞.

D.D. Monticelli (Politecnico di Milano) The Poisson equation on Riemannian manifolds 17 / 27



Preliminary estimates III

Under the hypotheses of Theorem 1 we have the following

Prop. 2: Intermediate-level sets (for Theorem 1)

There exists a positive constant C such that, for any locally Holder continuous
function f , 0 < δ < 1 and ε > 0,∣∣∣∣∣

∫
Lp(δε,ε)

G (p, y)f (y) dy

∣∣∣∣∣ ≤ C (− log δ) sup
Lp(δε,ε)

∣∣∣∣ fρ
∣∣∣∣ .

Basically a consequence of the coarea formula.
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Under the hypotheses of Theorem 2, we have the weaker result

Prop. 3: Intermediate-level sets (for Theorem 2)

There exists a positive constant C such that, for any locally Holder continuous
function f , 0 < δ < 1 and ε > 0,∣∣∣∣∣

∫
Lp(δε,ε)

G (p, y)f (y) dy

∣∣∣∣∣ ≤ C (1− log δ) sup
Lp(δε,ε)

∣∣∣∣ fρ
∣∣∣∣ .

Remarks:

This estimate was essentially proved in [Li-Wang, ’06] and used in
[Munteanu-Sesum, ’10].

The weighted Poincaré inequality and the “rescaled distance” rρ are used in
this step of the proof.
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Sketch of the proof II

∣∣∣∣∫
M

G (p, y)f (y) dy

∣∣∣∣ ≤ ∫
Lp(0,A eBω(a))

G (p, y)|f (y)| dy

+

∫
Lp(A eBω(a),∞)

G (p, y)|f (y)| dy .

Since f is locally bounded, the second term is controlled by Prop. 1 (high-level
sets). To estimate the first term, suitably choose a sequence am ↘ 0+ starting at
a0 = A eBω(a) and note that∫

Lp(0,A eBω(a))
G (p, y)|f (y)| dy =

∞∑
m=0

∫
Lp(am+1,am)

G (p, y)|f (y)| dy .

It remains to control G (p, y) on low-level sets. Note that each term of the series
is finite by Prop. 2 and by the boundedness of f

ρ .
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Sketch of the proof III

From Prop. 2 (intermediate-level sets):∫
Lp(am+1,am)

G (x , y)|f (y)| dy ≤ C

(
log

am
am+1

)
sup

Lp(am+1,am)

∣∣∣∣ fρ
∣∣∣∣ .

The sequence am is chosen so that

log
am
am+1

= ω(m + 1)− ω(m).

Finally, using Lemma 1 (gradient estimates) we can show that

Lp

(am+1

2
, 2am

)
⊂ M \ Bm(p).

D.D. Monticelli (Politecnico di Milano) The Poisson equation on Riemannian manifolds 21 / 27



Sketch of the proof III

From Prop. 2 (intermediate-level sets):∫
Lp(am+1,am)

G (x , y)|f (y)| dy ≤ C

(
log

am
am+1

)
sup

Lp(am+1,am)

∣∣∣∣ fρ
∣∣∣∣ .

The sequence am is chosen so that

log
am
am+1

= ω(m + 1)− ω(m).

Finally, using Lemma 1 (gradient estimates) we can show that

Lp

(am+1

2
, 2am

)
⊂ M \ Bm(p).

D.D. Monticelli (Politecnico di Milano) The Poisson equation on Riemannian manifolds 21 / 27



Sketch of the proof III
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Sketch of the proof IV

Hence we obtain (for large m)∫
Lp(am+1,am)

G (x , y)|f (y)| dy ≤ C (ω(m + 1)− ω(m)) sup
M\Bm(p)

∣∣∣∣ fρ
∣∣∣∣ .

Thus, ∫
Lp(0,A eBω(a))

G (x , y)|f (y)| dy

≤ C1

∞∑
m=1

(ω(m + 1)− ω(m)) sup
M\Bm(p)

∣∣∣∣ fρ
∣∣∣∣+ C2 < +∞.

Then we finally conclude ∣∣∣∣∫
M

G (p, y)f (y) dy

∣∣∣∣ <∞
and u(x) is a (classical) solution.

�
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Thank you!
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curvature decay on complete Kähler manifolds, J. Differential Geom. 57
(2001) 339-388.

P. Li, J. Wang, Weighted Poincaré inequality and rigidity of complete
manifolds, Ann. Sci. Ecole Norm. Sup. (4) 39 (2006) 921-982.

O. Munteanu, N. Sesum, The Poisson equation on complete manifolds with
positive spectrum and applications, Adv. Math. 223 (2010), 198-219.

G. Catino, D. D. M., F. Punzo, The Poisson equation on manifolds with
positive essential spectrum, 2018, preprint.

G. Catino, D. D. M., F. Punzo, The Poisson equation on Riemannian
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Sharpness: model manifolds I

Let (M, g) be a rotationally symmetric manifold with pole p ∈ M and metric
given by

g = dr2 + ϕ(r)2gSn−1

where gSn−1 is the standard metric on the round sphere Sn−1 and
ϕ ∈ C∞((0,∞)) ∩ C 1([0,∞)) with ϕ > 0 if r > 0, ϕ(0) = 0 and ϕ′(0) = 1.
The choice ϕ(r) = r and ϕ(r) = sinh(r) gives the standard metrics on Rn and Hn,
respectively. The Laplacian is given by

∆ = ∂2
r + (n − 1)

ϕ′

ϕ
∂r +

1

ϕ2
∆Sn−1 .

As we already observed∣∣∣∣∫
M

G (x , y)f (y) dy

∣∣∣∣ <∞ ⇐⇒
∣∣∣∣∫

M

G (p, y)f (y) dy

∣∣∣∣ <∞ .

In this case u(x) =
∫
M
G (x , y)f (y) dy is a solution and, if f = f (r), a simple

computation shows that

u(p) =

∫ ∞
0

(∫ ∞
r

1

ϕ(t)n−1
dt

)
f (r)ϕ(r)n−1 dr .
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Sharpness: model manifolds II

Let γ ∈ R and choose for r � 1

ϕ(r) =


exp

(
B r1+ γ

2

)
if γ > −2

rδ if γ = −2

r if γ < −2

extended suitably near r = 0 (B, δ suitable positive constants). Then

Ric ≥ −C (1 + r)γ .

Choose f = f (r) = 1/(1 + r)α. With this choices, it is easy to see that the
integral defining u(p) is finite (so a solution exists) if and only if

α >

{
1− γ

2 if γ ≥ −2

2 if γ < −2 .
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On the other hand it can be shown that we can apply Theorem 1, with

ρ(x) ∼

{
C ′ r(x)γ if γ ≥ −2

C ′ r(x)−2 if γ < −2

and

(ω(j + 1)− ω(j)) sup
M\Bj (p)

∣∣∣∣ fρ
∣∣∣∣ ∼

{
C

jα+
γ
2

if γ ≥ −2

C
jα−1 if γ < −2

and the series converges if and only if

α >

{
1− γ

2 if γ ≥ −2

2 if γ < −2 .
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